An improvement to the Neural Simulation Tool (NEST) algorithm, the primary tool of the Human Brain Project, expanded the scope of brain neural data management (for simulations) from the current 1% of discrete neurons (about the number in the cerebellum) to 10%. The NEST algorithm can scale to store 100% of BCI-derived or simulated neural data within near-term reach as supercomputing capacity increases. The algorithm achieves its massive efficiency boost by eliminating the need to explicitly store as much data about each neuron’s state.

Abstract of Extremely Scalable Spiking Neuronal Network Simulation Code: From Laptops to Exascale Computers

State-of-the-art software tools for neuronal network simulations scale to the largest computing systems available today and enable investigations of large-scale networks of up to 10 % of the human cortex at a resolution of individual neurons and synapses. Due to an upper limit on the number of incoming connections of a single neuron, network connectivity becomes extremely sparse at this scale. To manage computational costs, simulation software ultimately targeting the brain scale needs to fully exploit this sparsity. Here we present a two-tier connection infrastructure and a framework for directed communication among compute nodes accounting for the sparsity of brain-scale networks. We demonstrate the feasibility of this approach by implementing the technology in the NEST simulation code and we investigate its performance in different scaling scenarios of typical network simulations. Our results show that the new data structures and communication scheme prepare the simulation kernel for post-petascale high-performance computing facilities without sacrificing performance in smaller systems.

Source: http://www.kurzweilai.net/new-algorithm-will-allow-for-simulating-neural-connections-of-entire-brain-on-future-exascale-supercomputers