Given the human brain’s approximately 80 billion neurons, it would take tens of thousands of these devices to record a substantial volume of neuron-level activities. Still, this is a remarkable achievement.

The system would simultaneously acquire data from more than 1 million neurons in real time. It would convert the spike data (using bit encoding) and send it via an effective communication format for processing and storage on conventional computer systems. It would also provide feedback to a subject in under 25 milliseconds — stimulating up to 100,000 neurons.

Monitoring large areas of the brain in real time. Applications of this new design include basic research, clinical diagnosis, and treatment. It would be especially useful for future implantable, bidirectional BMIs and BCIs, which are used to communicate complex data between neurons and computers. This would include monitoring large areas of the brain in paralyzed patients, revealing an imminent epileptic seizure, and providing real-time feedback control to robotic arms used by quadriplegics and others.

Source: http://www.kurzweilai.net/recording-data-from-one-million-neurons-in-real-time?utm_source=KurzweilAI+Weekly+Newsletter&utm_campaign=ef0a349adb-UA-946742-1&utm_medium=email&utm_term=0_147a5a48c1-ef0a349adb-282174293