Category Archives: complexity

Running on escalators

Ideally, automation would yield a Star Trek reality of increasing leisure and quality of choice and experience. Why isn’t this our experience? An article on Medium offers insight into why this is not occurring on any significant scale.

Evolved behavioral strategies explained by the prisoner’s dilemma damn the majority of humans to a constant doubling down. We exchange the ‘leisure dividend’ (free time) granted by automation for opportunities to outcompete others.

Apparently, the sort of reciprocal social learning that could lead us to make healthy choices with our leisure opportunities depends on us and our competitors being able to mutually track our outcomes across consecutive iterations of the ‘game’. That ‘traceability’ quickly breaks down with the complexity inherent in vast numbers of competitors. When we conclude that any viable competitor may use her leisure dividend to further optimize her competitive position, rather than to pause to enjoy her life, we tend to do the same. Each assumes the other will sprint ahead and so chooses to sprint ahead. Both forfeit the opportunity to savor the leisure dividend.

The prisoner’s dilemma shows that we (most humans) would rather be in a grueling neck-and-neck race toward an invisible, receding finish line than permit the possibility a competitor may increase her lead.

Any strategy that’s so endemic must have evolutionary roots. Thoughts?

Vibration: A new theory of consciousness

Article in Scientific American. One point. The article sees energetic fields underlying matter as if they are separate things, one the cause of the other. Whereas a naturalistic, postmetaphysical view might be that they mutually entail and co-generate each other within an ecological frame. The cause/effect frame still clings to a form of dualism.

Applying artificial intelligence for social good

This McKinsey article is an excellent overview of this more extensive article (3 MB PDF) enumerating the ways in which varieties of deep learning can improve existence. Worth a look.

The articles cover the following:

  • Mapping AI use cases to domains of social good
  • AI capabilities that can be used for social good
  • Overcoming bottlenecks, especially around data and talent
  • Risks to be managed
  • Scaling up the use of AI for social good

The Singularity is Near: When Humans Transcend Biology

Kurzweil builds and supports a persuasive vision of the emergence of a human-level engineered intelligence in the early-to-mid twenty-first century. In his own words,

With the reverse engineering of the human brain we will be able to apply the parallel, self-organizing, chaotic algorithms of  human intelligence to enormously powerful computational substrates. This intelligence will then be in a position to improve its own design, both hardware and software,  in a rapidly accelerating iterative process.

In Kurzweil's view, we must and will ensure we evade obsolescence by integrating emerging metabolic and cognitive technologies into our bodies and brains. Through self-augmentation with neurotechnological prostheses, the locus of human cognition and identity will gradually (but faster than we'll expect, due to exponential technological advancements) shift from the evolved substrate (the organic body) to the engineered substrate, ultimately freeing the human mind to develop along technology's exponential curve rather than evolution's much flatter trajectory.

The book is extensively noted and indexed, making the deep-diving reader's work a bit easier.

If you have read it, feel free to post your observations in the comments below. (We've had a problem with the comments section not appearing. It may require more troubleshooting.)

Recording data from one million neurons in real time

Given the human brain’s approximately 80 billion neurons, it would take tens of thousands of these devices to record a substantial volume of neuron-level activities. Still, this is a remarkable achievement.

The system would simultaneously acquire data from more than 1 million neurons in real time. It would convert the spike data (using bit encoding) and send it via an effective communication format for processing and storage on conventional computer systems. It would also provide feedback to a subject in under 25 milliseconds — stimulating up to 100,000 neurons.

Monitoring large areas of the brain in real time. Applications of this new design include basic research, clinical diagnosis, and treatment. It would be especially useful for future implantable, bidirectional BMIs and BCIs, which are used to communicate complex data between neurons and computers. This would include monitoring large areas of the brain in paralyzed patients, revealing an imminent epileptic seizure, and providing real-time feedback control to robotic arms used by quadriplegics and others.

Source: http://www.kurzweilai.net/recording-data-from-one-million-neurons-in-real-time?utm_source=KurzweilAI+Weekly+Newsletter&utm_campaign=ef0a349adb-UA-946742-1&utm_medium=email&utm_term=0_147a5a48c1-ef0a349adb-282174293

We have the wrong paradigm for the complex adaptive system we are part of

This very rich, conversational thought piece asks if we, as participant designers within a complex adaptive ecology, can envision and act on a better paradigm than the ones that propel us toward mono-currency and monoculture.

We should learn from our history of applying over-reductionist science to society and try to, as Wiener says, “cease to kiss the whip that lashes us.” While it is one of the key drivers of science—to elegantly explain the complex and reduce confusion to understanding—we must also remember what Albert Einstein said, “Everything should be made as simple as possible, but no simpler.” We need to embrace the unknowability—the irreducibility—of the real world that artists, biologists and those who work in the messy world of liberal arts and humanities are familiar with.

In order to effectively respond to the significant scientific challenges of our times, I believe we must view the world as many interconnected, complex, self-adaptive systems across scales and dimensions that are unknowable and largely inseparable from the observer and the designer. In other words, we are participants in multiple evolutionary systems with different fitness landscapes at different scales, from our microbes to our individual identities to society and our species. Individuals themselves are systems composed of systems of systems, such as the cells in our bodies that behave more like system-level designers than we do.

Joichi Ito

Book review – Life 3.0: Being Human in the Age of Artificial Intelligence, by Max Tegmark

Max Tegmark’s book, Life 3.0: Being Human in the Age of Artificial Intelligence, introduces a framework for defining types of life based on the degree of design control that sensing, self-replicating entities have over their own ‘hardware’ (physical forms) and ‘software’ (“all the algorithms and knowledge that you use to process the information from your senses and decide what to do”).

It’s a relatively non-academic read and well worth the effort for anyone interested in the potential to design the next major forms of ‘Life’ to transcend many of the physical and cognitive constraints that have us now on the brink of self-destruction. Tegmark’s forecast is optimistic.

If you’ve read the book, please share your observations and questions in the comments below this article. (If you are not a member and would like to be able to comment, send your preferred email address to cogniphile@albuquirky.net. Please provide a concise description of your interests relevant to our site. Links to relevant books and articles will be accepted. No other advertising or unrelated comments will be accepted and submitters may be banned.)

Wild systems theory (WST) – context and relationships make reality meaningful

Edward has posted some great thoughts and resources on embodied cognition (EC). I stumbled on some interesting information on a line of thinking within the EC literature. I find contextualist, connectivist approaches compelling in their ability to address complex-systems such as life and (possibly) consciousness. Wild systems theory (WST) “conceptualizes organisms as multi-scale self-sustaining embodiments of the phylogenetic, cultural, social, and developmental contexts in which they emerged and in which they sustain themselves. Such self-sustaining embodiments of context are naturally and necessarily about the multi-scale contexts they embody. As a result, meaning (i.e., content) is constitutive of what they are. This approach to content overcomes the computationalist need for representation while simultaneously satisfying the ecological penchant for multi-scale contingent interactions.”While I find WST fascinating, I’m unclear on whether it has been or can be assessed empirically. What do you think? Is WST shackled to philosophy?

Can one person know another’s mental state? Physicalists focus on how each of us develops a theory of mind (TOM) about each of the other people we observe. TOM is a theory because it is based on assumptions we make about others’ mental states by observing their behaviors. It is not based on any direct reading or measurement of internal processes. In its extreme, the physicalist view asserts that subjective experience and consciousness itself are merely emergent epiphenomena and not fundamentally real.

EC theorists often describe emergent or epiphenomenal subjective properties such as emotions and conscious experiences as “in terms of complex, multi-scale, causal dynamics among objective phenomena such as neurons, brains, bodies, and worlds.” Emotions, experiences, and meanings are seen to emerge from, be caused by or identical with, or be informational aspects of objective phenomena. Further, many EC proponents regards subjective properties as “logically unnecessary to the scientific description.” Some EC theorists conceive of the non-epiphenomenal reality of experience in a complex systems framework and define experience in terms of relational properties. In Gibson’s (1966) concept of affordances, organisms perceive behavioral possibilities in other organisms and in their environment. An affordance is a perceived relationship (often in terms of utility), such a how an organism might use something–say a potential mate, prey/food, or a tool. Meaning arises from “bi-directional aboutness” between an organism and what it perceives or interacts with. Meaning is about relationship.

(A very good, easy read on meaning arising from relationships is the book Learning How to Learn, by Novak and Gowin. In short, it’s the connecting/relating words such as is, contains, produces, consumes, etc., that enable meaningful concepts to be created in minds via language that clarifies context.)

Affordances and relationality at one level of organization and analysis carve out a non-epiphenomenal beachhead but do not banish epiphenomena from that or other levels. There’s a consideration of intrinsic, non-relational properties (perhaps mass) versus relational properties (such as weight). But again, level/scale of analysis matters (“mass emerges from a particle’s interaction with the Higgs field” and is thus relational after all) and some take this line of thinking to a logical end where there is no fundamental reality.

In WST, “all properties are constituted of and by their relations with context. As a result, all properties are inherently meaningful because they are naturally and necessarily about the contexts within which they persist. From this perspective, meaning is ubiquitous. In short, reality is inherently meaningful.”

2. Jordan, J. S., Cialdella, V. T., Dayer, A., Langley, M. D., & Stillman, Z. (2017). Wild Bodies Don’t Need to Perceive, Detect, Capture, or Create Meaning: They ARE Meaning. Frontiers in psychology8, 1149. Available from: https://www.frontiersin.org/articles/10.3389/fpsyg.2017.01149/full [accessed Nov 09 2017]

BMAI members repository copy (PDF): https://albuquirky.net/download/277/embodied-grounded-cognition/449/wild-systems-theory_bodies-are-meaning.pdf

Are We Racists?

BMAI friends. The following ramble is my first cut at making sense of the grave role racial (and other) bias is playing in the world today. This was prompted by comments I see daily from my family and friends on social media. Thinking about the great lack of self- and group-awareness many of the commenters display, I turned my scope inward. How do my own innate, evolved biases slant me to take my group’s and my own privileges for granted and make invalid assumptions about those I perceive (subconsciously or explicitly) to be ‘the other’? I put this forward to start a discussion and hope you will contribute your own insights and references. Feel free to post comments or even insert questions, comments, or new text directly into my text. Of course, you can create your own new posts as well. Thanks.


Two Levels of Racism
 
1. Population Group Level
 
Racism is an expression of group dynamics. Consider two levels of racism. First, there’s systemic racism where conditions in a population generally favor one race over others. One race (or maybe a few races) has greater access to material and cultural influence in the population. This does not occur accidentally, but through the ongoing efforts of the dominant group to achieve and expand its controlling influence.
 
2. Individual and Local-Group Level
 
That’s where the second level of racism comes in. How a person perceives any group’s efforts to attain equal access and influence depends on whether the person is in the dominant group or the aspiring group. There are many ways individuals and their affinity groups perceive and act within the racially unequal system to maintain or change the racial inequalities. The group in power perceives efforts in its favor as good, appropriate, justified, patriotic, necessary, ethical, moral, and even (when there’s a shared group supernatural narrative) ordained, holy, etc. When a member of an out-group appears to support (or at least not outwardly oppose) the in-group’s dominance, members of the in-group view that as a proof that they are rightfully on top.
 
The group in power perceives any questioning of its dominance in the larger population as suspicious, dishonest, lazy (attempts to gain more access than is deserved), subversive, unpatriotic (or even treasonous), or (through the lens of dogma) evil, anti-God, etc. Obviously, racism (and other efforts to maintain inequality) is at work when these perceptions are acted out by legislators, law enforcers, prosecutors, juries, judges, presidents and their staff members, the private sector, and individual members of the favored group.
 
Members of a group with less influence perceive their questioning of the dominant group’s power in opposite terms from how the dominant group sees their struggle. Members of lower-access groups experience their quest for equality on all fronts as expressions of their inherent right–even necessity–to pursue “life, liberty, and happiness.” They see the efforts of dominant groups to control and exclude them as unjustified oppression by people who abuse the power provided them within a biased system that clearly needs to be changed.
 
On the first (population) level, racism is an aspect of the in-group/out-group dynamics that are present in all of us. Our ‘hard-wired’ programming is to subconsciously favor those we perceive to be more like us (in outward appearance, views, and culture) and subconsciously feel some degree of aversion and suspicion (and often fear) of those whose appearances, views, and culture vary from ours. Groups (through the actions of their members and leaders) use their power to slant social and economic systems to favor their own power and influence and to decrease the influence of those they perceive as not members of their group(s). When this natural bias results in one racial group having greater access to resources (education, healthcare, emergency services, and other public services; jobs; legislative influence; judicial equality; media visibility; etc.), systemic or structural racism is in place.
 
A takeaway of all this is that we are all racists, in the sense that the human brain has evolved complex social navigation functions that include strong biases in favor of one’s perceived in-group and disfavoring members of all other groups. To the extent we are hard-wired to perceive people who (as a category) look superficially different from us as somehow less safe or worthy of inclusion and power-sharing, we are innately racist. When we make the effort to become aware of, challenge, and ensure our racial biases do not influence our words and actions, we are moving toward a less bigoted way of being.