All posts by Mark H

About Mark H

Information technologist, knowledge management expert, and writer. Academic background in knowledge management, social and natural sciences, information technologies, learning, educational technologies, and philosophy. Married with one adult child who's married and has a teenage daughter.

Seeing my blindfold

I’ve found some thought-provoking answers on the Q&A social media site, Quora. Follow the link to a perceptive and helpful answer to, “Can a person be able to objectively identify exactly when and how their thinking processes are being affected by cognitive biases?

The author provides some practical (if exhausting) recommendations that, if even partly followed by a third-to-half of people (my guestimate), would possibly collapse the adversarial culture in our country.

The religious brain and atheism

As much of the world settles into the spectacle and cozy embrace of culturally reinforced magical thinking, New Scientist has several interesting recent articles about the evolved intuitive nature of religious thinking as a cognitive by-product (of the value of assuming agency in environmental phenomena, for example) and delving into how atheism is and is not like religious thinking. I find the point interesting that religion and atheism (or any ism), as social constructs, cannot be studied and compared in the same ways that objectively real objects and phenomena can, but we can learn much from systematic approaches to investigating the underlying neurological functions and their probable evolutionary value.

https://www.newscientist.com/article/mg23631561-000-effortless-thinking-the-godshaped-hole-in-your-brain/

https://www.newscientist.com/article/mg21328562-000-the-god-issue-we-are-all-born-believers/

https://www.newscientist.com/article/mg23431212-800-faith-of-the-faithless-is-atheism-just-another-religion/

If you don’t subscribe, Albuquerque Public Libraries carry New Scientist.

Check out Ed Berge’s blog

We’ve come to appreciate Ed Berge’s thoughtful posts on consciousness, metaphorical thinking, etc. Check out his fun, informative blog, Proactive Progressive Propagation. (Where I work, that would definitely become ‘P3.’)

We have the wrong paradigm for the complex adaptive system we are part of

This very rich, conversational thought piece asks if we, as participant designers within a complex adaptive ecology, can envision and act on a better paradigm than the ones that propel us toward mono-currency and monoculture.

We should learn from our history of applying over-reductionist science to society and try to, as Wiener says, “cease to kiss the whip that lashes us.” While it is one of the key drivers of science—to elegantly explain the complex and reduce confusion to understanding—we must also remember what Albert Einstein said, “Everything should be made as simple as possible, but no simpler.” We need to embrace the unknowability—the irreducibility—of the real world that artists, biologists and those who work in the messy world of liberal arts and humanities are familiar with.

In order to effectively respond to the significant scientific challenges of our times, I believe we must view the world as many interconnected, complex, self-adaptive systems across scales and dimensions that are unknowable and largely inseparable from the observer and the designer. In other words, we are participants in multiple evolutionary systems with different fitness landscapes at different scales, from our microbes to our individual identities to society and our species. Individuals themselves are systems composed of systems of systems, such as the cells in our bodies that behave more like system-level designers than we do.

Joichi Ito

Book review – Life 3.0: Being Human in the Age of Artificial Intelligence, by Max Tegmark

Max Tegmark’s new book, Life 3.0: Being Human in the Age of Artificial Intelligence, introduces a framework for defining types of life based on the degree of design control that sensing, self-replicating entities have over their own ‘hardware’ (physical forms) and ‘software’ (“all the algorithms and knowledge that you use to process the information from your senses and decide what to do”).

It’s a relatively non-academic read and well worth the effort for anyone interested in the potential to design the next major forms of ‘Life’ to transcend many of the physical and cognitive constraints that have us now on the brink of self-destruction. Tegmark’s forecast is optimistic.

Wild systems theory (WST) – context and relationships make reality meaningful

Edward has posted some great thoughts and resources on embodied cognition (EC). I stumbled on some interesting information on a line of thinking within the EC literature. I find contextualist, connectivist approaches compelling in their ability to address complex-systems such as life and (possibly) consciousness. Wild systems theory (WST) “conceptualizes organisms as multi-scale self-sustaining embodiments of the phylogenetic, cultural, social, and developmental contexts in which they emerged and in which they sustain themselves. Such self-sustaining embodiments of context are naturally and necessarily about the multi-scale contexts they embody. As a result, meaning (i.e., content) is constitutive of what they are. This approach to content overcomes the computationalist need for representation while simultaneously satisfying the ecological penchant for multi-scale contingent interactions.”While I find WST fascinating, I’m unclear on whether it has been or can be assessed empirically. What do you think? Is WST shackled to philosophy?

Can one person know another’s mental state? Physicalists focus on how each of us develops a theory of mind (TOM) about each of the other people we observe. TOM is a theory because it is based on assumptions we make about others’ mental states by observing their behaviors. It is not based on any direct reading or measurement of internal processes. In its extreme, the physicalist view asserts that subjective experience and consciousness itself are merely emergent epiphenomena and not fundamentally real.

EC theorists often describe emergent or epiphenomenal subjective properties such as emotions and conscious experiences as “in terms of complex, multi-scale, causal dynamics among objective phenomena such as neurons, brains, bodies, and worlds.” Emotions, experiences, and meanings are seen to emerge from, be caused by or identical with, or be informational aspects of objective phenomena. Further, many EC proponents regards subjective properties as “logically unnecessary to the scientific description.” Some EC theorists conceive of the non-epiphenomenal reality of experience in a complex systems framework and define experience in terms of relational properties. In Gibson’s (1966) concept of affordances, organisms perceive behavioral possibilities in other organisms and in their environment. An affordance is a perceived relationship (often in terms of utility), such a how an organism might use something–say a potential mate, prey/food, or a tool. Meaning arises from “bi-directional aboutness” between an organism and what it perceives or interacts with. Meaning is about relationship.

(A very good, easy read on meaning arising from relationships is the book Learning How to Learn, by Novak and Gowin. In short, it’s the connecting/relating words such as is, contains, produces, consumes, etc., that enable meaningful concepts to be created in minds via language that clarifies context.)

Affordances and relationality at one level of organization and analysis carve out a non-epiphenomenal beachhead but do not banish epiphenomena from that or other levels. There’s a consideration of intrinsic, non-relational properties (perhaps mass) versus relational properties (such as weight). But again, level/scale of analysis matters (“mass emerges from a particle’s interaction with the Higgs field” and is thus relational after all) and some take this line of thinking to a logical end where there is no fundamental reality.

In WST, “all properties are constituted of and by their relations with context. As a result, all properties are inherently meaningful because they are naturally and necessarily about the contexts within which they persist. From this perspective, meaning is ubiquitous. In short, reality is inherently meaningful.”

2. Jordan, J. S., Cialdella, V. T., Dayer, A., Langley, M. D., & Stillman, Z. (2017). Wild Bodies Don’t Need to Perceive, Detect, Capture, or Create Meaning: They ARE Meaning. Frontiers in psychology8, 1149. Available from: https://www.frontiersin.org/articles/10.3389/fpsyg.2017.01149/full [accessed Nov 09 2017]

BMAI members repository copy (PDF): https://albuquirky.net/download/277/embodied-grounded-cognition/449/wild-systems-theory_bodies-are-meaning.pdf

Your brain on AI-powered, immersive, virtual reality social networks

Kevin Kelly, the founder of Wired Magazine, forecasts virtual reality (VR) becoming our primary social environment within five years. VR experiences will be increasingly interactive (physically and socially). Our brains will process VR sensations as real.

The price of this novelty is all your data, historical and biometric, and with that will come more advertising than ever. What is the beginning of a new dimension of fun, will be the end of privacy.

AI more advanced than what keeps people addicted to current social media and search platforms will attract and keep social VR participants. How will personal and group cognition and behavior change when VR becomes more compelling than ‘legacy reality?’

See Kelly’s 5-minute talk at http://bigthink.com/videos/kevin-kelly-virtual-reality-engages-our-reptile-brain

Sex differences in the gut-microbiome-brain axis

Abstract

In recent years, the bidirectional communication between the gut microbiome and the brain has emerged as a factor that influences immunity, metabolism, neurodevelopment and behaviour. Cross-talk between the gut and brain begins early in life immediately following the transition from a sterile in utero environment to one that is exposed to a changing and complex microbial milieu over a lifetime. Once established, communication between the gut and brain integrates information from the autonomic and enteric nervous systems, neuroendocrine and neuroimmune signals, and peripheral immune and metabolic signals. Importantly, the composition and functional potential of the gut microbiome undergoes many transitions that parallel dynamic periods of brain development and maturation for which distinct sex differences have been identified. Here, we discuss the sexually dimorphic development, maturation and maintenance of the gut microbiome–brain axis, and the sex differences therein important in disease risk and resilience throughout the lifespan.

http://rstb.royalsocietypublishing.org/content/371/1688/20150122