Category Archives: neurons

Book: Range: Why Generalists Triumph in a Specialized World

In his new book, Range: Why Generalists Triumph in a Specialized World, David J. Epstein investigates the significant advantages of generalized cognitive skills for success in a complex world. We’ve heard and read many praises for narrow expertise in both humans and AIs (Watson, Alpha Go, etc.). In both humans and AIs, however, narrow+deep expertise does not translate to adaptiveness when reality presents novel challenges, as it does constantly. 

As you ingest this highly readable, non-technical book, please add your observations to the comments below. 

Book discussion event on embodied cognition

Our discussions all, to some extent, relate to cognition. An important area of inquiry concerns whether some form of physical embodiment is required for a brain to support cognition in general and the self-aware sort of cognition we humans possess.

THE BOOK

Philosophy In The Flesh: The Embodied Mind And Its Challenge To Western Thought, by George Lakoff and Mark Johnson. Please note, while the title includes “Philosophy,” we are not a philosophy group and the book and discussion will revolve around scientific concepts and implications, not spiritualistic or metaphysical ideas.

Amazon (used copies in the $6 range, including shipping)

eBook (free PDF)

RSVP TO ATTEND

RSVP by email to cogniphile@albuquirky.net if you plan to attend our discussion on the afternoon of Saturday, November 3, 2018.

YOUR PREPARATION

While our group enjoys socializing and will plan other events to that end, this meeting is for focused discussion among people who invest the time in advance to inform themselves on the topic. As a courtesy to those who will do their ‘homework,’ before the meeting please read and consider Part 1 (the first eight chapters) of the book. As you read, jot down your thoughts and questions on the book’s claims, supporting evidence, and implications for our core topics–brain, mind, and artificial intelligence. If you are not able to invest this effort prior to the meeting, please do not attend. Thank you for your understanding.

If you are a visual systematic learner, try creating a concept map of the book’s core concepts and ideas.

RELATED RESOURCES

Please see related resource links in the comments to this post. Also, you can search this site’s other relevant posts using the category and tag, ’embodied cognition.’

THE LOCATION

The location will be in the vicinity of UNM on Central Ave. When you RSVP to cogniphile@albuquirky.net, you will be sent the address.

Elephant neural variation suggests a contemplative mind

An article in The Conversation explores the variety of neuron structures in the elephant brain.

Taken together, these morphological characteristics suggest that neurons in the elephant cortex may synthesize a wider variety of input than the cortical neurons in other mammals.

In terms of cognition, my colleagues and I believe that the integrative cortical circuitry in the elephant supports the idea that they are essentially contemplative animals. Primate brains, by comparison, seem specialized for rapid decision-making and quick reactions to environmental stimuli.

The Singularity is Near: When Humans Transcend Biology

Kurzweil builds and supports a persuasive vision of the emergence of a human-level engineered intelligence in the early-to-mid twenty-first century. In his own words,

With the reverse engineering of the human brain we will be able to apply the parallel, self-organizing, chaotic algorithms of  human intelligence to enormously powerful computational substrates. This intelligence will then be in a position to improve its own design, both hardware and software,  in a rapidly accelerating iterative process.

In Kurzweil's view, we must and will ensure we evade obsolescence by integrating emerging metabolic and cognitive technologies into our bodies and brains. Through self-augmentation with neurotechnological prostheses, the locus of human cognition and identity will gradually (but faster than we'll expect, due to exponential technological advancements) shift from the evolved substrate (the organic body) to the engineered substrate, ultimately freeing the human mind to develop along technology's exponential curve rather than evolution's much flatter trajectory.

The book is extensively noted and indexed, making the deep-diving reader's work a bit easier.

If you have read it, feel free to post your observations in the comments below. (We've had a problem with the comments section not appearing. It may require more troubleshooting.)

Newly discovered form of interneural communication

Two independent teams of scientists from the University of Utah and the University of Massachusetts Medical School have discovered that a gene crucial for learning, called Arc, can send its genetic material from one neuron to another by employing a strategy commonly used by viruses. The studies, both published in Cell, unveil a new way that nervous system cells interact.

https://www.nih.gov/news-events/news-releases/memory-gene-goes-viral

70-year-old Hebbs synaptic learning theory wrong

Neural learning occurs at dendrite roots, not in synapses.

The newly suggested learning scenario indicates that learning occurs in a few dendrites that are in much closer proximity to the neuron, as opposed to the previous notion. …

The new learning scenario occurs in different sites of the brain and therefore calls for a reevaluation of current treatments for disordered brain functionality. … In addition, the learning mechanism is at the basis of recent advanced machine learning and deep learning achievements. The change in the learning paradigm opens new horizons for different types of deep learning algorithms and artificial intelligence based applications imitating our brain functions, but with advanced features and at a much faster speed.

Source: https://www.sciencedaily.com/releases/2018/03/180323084818.htm

Prosthetic memory system successful in humans

“This is the first time scientists have been able to identify a patient’s own brain cell code or pattern for memory and, in essence, ‘write in’ that code to make existing memory work better, an important first step in potentially restoring memory loss”

We showed that we could tap into a patient’s own memory content, reinforce it and feed it back to the patient,” Hampson said. “Even when a person’s memory is impaired, it is possible to identify the neural firing patterns that indicate correct memory formation and separate them from the patterns that are incorrect. We can then feed in the correct patterns to assist the patient’s brain in accurately forming new memories, not as a replacement for innate memory function, but as a boost to it.”

Source: http://www.wakehealth.edu/News-Releases/2018/Prosthetic_Memory_System_Successful_in_Humans_Study_Finds.htm

Algorithm brings whole-brain simulation within reach

An improvement to the Neural Simulation Tool (NEST) algorithm, the primary tool of the Human Brain Project, expanded the scope of brain neural data management (for simulations) from the current 1% of discrete neurons (about the number in the cerebellum) to 10%. The NEST algorithm can scale to store 100% of BCI-derived or simulated neural data within near-term reach as supercomputing capacity increases. The algorithm achieves its massive efficiency boost by eliminating the need to explicitly store as much data about each neuron’s state.

Abstract of Extremely Scalable Spiking Neuronal Network Simulation Code: From Laptops to Exascale Computers

State-of-the-art software tools for neuronal network simulations scale to the largest computing systems available today and enable investigations of large-scale networks of up to 10 % of the human cortex at a resolution of individual neurons and synapses. Due to an upper limit on the number of incoming connections of a single neuron, network connectivity becomes extremely sparse at this scale. To manage computational costs, simulation software ultimately targeting the brain scale needs to fully exploit this sparsity. Here we present a two-tier connection infrastructure and a framework for directed communication among compute nodes accounting for the sparsity of brain-scale networks. We demonstrate the feasibility of this approach by implementing the technology in the NEST simulation code and we investigate its performance in different scaling scenarios of typical network simulations. Our results show that the new data structures and communication scheme prepare the simulation kernel for post-petascale high-performance computing facilities without sacrificing performance in smaller systems.

Source: http://www.kurzweilai.net/new-algorithm-will-allow-for-simulating-neural-connections-of-entire-brain-on-future-exascale-supercomputers

Recording data from one million neurons in real time

Given the human brain’s approximately 80 billion neurons, it would take tens of thousands of these devices to record a substantial volume of neuron-level activities. Still, this is a remarkable achievement.

The system would simultaneously acquire data from more than 1 million neurons in real time. It would convert the spike data (using bit encoding) and send it via an effective communication format for processing and storage on conventional computer systems. It would also provide feedback to a subject in under 25 milliseconds — stimulating up to 100,000 neurons.

Monitoring large areas of the brain in real time. Applications of this new design include basic research, clinical diagnosis, and treatment. It would be especially useful for future implantable, bidirectional BMIs and BCIs, which are used to communicate complex data between neurons and computers. This would include monitoring large areas of the brain in paralyzed patients, revealing an imminent epileptic seizure, and providing real-time feedback control to robotic arms used by quadriplegics and others.

Source: http://www.kurzweilai.net/recording-data-from-one-million-neurons-in-real-time?utm_source=KurzweilAI+Weekly+Newsletter&utm_campaign=ef0a349adb-UA-946742-1&utm_medium=email&utm_term=0_147a5a48c1-ef0a349adb-282174293

Next discussion meeting Apr 2: Brain-Computer Interface, now and future

During our next discussion meeting, we’ll explore the status, future potential, and human implications of neuroprostheses–particularly brain-computer interfaces. If you are local to Albuquerque, check our Meetup announcement to join or RSVP. The announcement text follows.

Focal questions

What are neuroprostheses? How are they used now and what may the future hold for technology-enhanced sensation, motor control, communications, cognition, and other human processes?

Resources (please review before the meeting)

Primary resources
• New Brain-Computer Interface Technology (video, 18 m)
https://www.youtube.com/watch?v=CgFzmE2fGXA
• Imagining the Future: The Transformation of Humanity (video, 19 m)
https://www.youtube.com/watch?v=7XrbzlR9QmI
• The Berlin Brain-Computer Interface: Progress Beyond Communication and Control (research article, access with a free Frontiers account)
https://www.frontiersin.org/articles/10.3389/fnins.2016.00530/full
• The Elephant in the Mirror: Bridging the Brain’s Explanatory Gap of Consciousness (research article)
https://www.frontiersin.org/articles/10.3389/fnsys.2016.00108/full

Other resources (recommend your own in the comments!)

• DARPA implant (planned) with up to 1 million neural connections (short article)
https://www.darpa.mil/news-events/2015-01-19

Extra Challenge: As you review the resources, think of possible implications from the perspectives of the other topics we’ve recently discussed:
• the dilemma of so much of human opinion and action deriving from non-conscious sources
• questions surrounding what it means to ‘be human’ and what values we place on our notions of humanness (e.g., individuality and social participation, privacy, ‘self-determination’ (or the illusion thereof), organic versus technologically enhanced cognition, etc.)