Category Archives: transhumanism

Consciousness in Humanoid Robots

New ebook from Frontiers in Science. The blurb:

Building a conscious robot is a grand scientific and technological challenge. Debates about the possibility of conscious robots and the related positive outcomes and hazards for human beings are today no more confined to philosophical circles. Robot consciousness is a research field aimed to a unified view of approaches as cognitive robotics, epigenetic and affective robotics, situated and embodied robotics, developmental robotics, anticipatory systems, biomimetic robotics. Scholars agree that a conscious robot would completely change the current views on technology: it would not be an “intelligent companion” but a complete novel kind of artifact. Notably, many neuroscientists involved in the study of consciousness do not exclude this possibility. Moreover, facing the problem of consciousness in robots may be a major move on the study of consciousness in humans and animals.

The Frontiers Research Topic on consciousness in humanoid robots concerns the theoretical studies, the models and the case studies of consciousness in humanoid robots. Topics related to this argument are:
– the needs of a body for robot consciousness;
– robot self-consciousness;
– the capability of a robot to reason about itself, its body and skills;
– the episodic memory in a robot, i.e., the ability to take into account its operational life;
– design strategies versus developmental approaches in assessing consciousness in a robot;
– robot architectures candidates for consciousness;
– symbolic versus neural networks representations in robot consciousness;
– consciousness, theory of mind and emotions in a humanoid robot;
– measurements and assessments of consciousness and self-consciousness in a robot;
– ethical and trust issues in a conscious humanoid robot.

Bezos projects capitalism into space

Yes, space exploration is critical but we need to do it for the right reasons. And Bezos and other futurists want it without awareness or regard for the socio-economic system that has created hell on earth. So dump the earth and take our destruction into space? How about we change our worldview and socio-economic system and do it for the right reasons? And invest most of our time, energy and money into saving this world?

“The saying ‘it’s easier to imagine the end of the world than to imagine the end of capitalism’ is very clear in Bezos’ future imaginings. He is unable to challenge the capitalist system from which he’s derived so much wealth. Thus the only positive future he can imagine involves leaving the only planet habitable to human beings. […] We don’t need space colonies; we need to get rid of billionaires and let the future be decided collectively, instead of letting a few powerful men rule the world.”

Their are alternatives to capitalism consistent with the above. As but one example see “From capitalism to the collaborative commons” in this journal issue.

Rushkoff: Team Human

Mark suggested this book as a future group reading and discussion and I agree. Rushkoff provides a very brief summary of his new book on the topic in the TED talk below. It starts with tech billionaires main concern being: Where do I build my bunker at the end of the world? So what happened to the idyllic utopias we thought tech was working toward, a collaborative commons of humanity? The tech boom became all about betting on stocks and getting as much money as possible for me, myself and I while repressing what makes us human. The motto became: “Human beings are the problem and technology is the solution.” Rushkoff is not very kind to the transhumanist notion of AI replacing humanity either, a consequence of that motto. He advises that we embed human values into the tech so that it serves us rather than the reverse.

The info processing (IP) metaphor of the brain is wrong

Psychologist Robert Epstein, the former editor of Psychology Today, challenges anyone to show the brain processing information or data. The IP metaphor, he says, is so deeply embedded in thinking about thinking it prevents us from learning how the brain really works. Epstein also takes on popular luminaries including Ray Kurzweil and Henry Markram, seeing both exemplifying the extremes of wrongness we get into with the IP metaphor and the notion mental experience could persist outside the organic body.

The Empty Brain (Aeon article with audio)

Musk: merging of humans and technology essential to survival

[et_pb_section bb_built=”1″][et_pb_row][et_pb_column type=”4_4″][et_pb_text _builder_version=”3.17.6″]

From Axios interview with Elon Musk:

Musk said his neuroscience company, Neuralink, has about 85 of “the highest per capita intelligence” group of engineers he has ever assembled — with the mission of building a hard drive for your brain.

  • “The long-term aspiration with Neuralink would be to achieve a symbiosis with artificial intelligence.”
  • Wait. What? “To achieve a sort of democratization of intelligence, such that it is not monopolistically held in a purely digital form by governments and large corporations.”

[/et_pb_text][et_pb_video _builder_version=”3.17.6″ src=”https://www.youtube.com/watch?v=yQjUw16Mu_0″ /][/et_pb_column][/et_pb_row][/et_pb_section]

Can we understand other minds? Novels and stories say: no

by Kanta Dihal

This article was originally published at Aeon and has been republished under Creative Commons.

Cassandra woke up to the rays of the sun streaming through the slats on her blinds, cascading over her naked chest. She stretched, her breasts lifting with her arms as she greeted the sun. She rolled out of bed and put on a shirt, her nipples prominently showing through the thin fabric. She breasted boobily to the stairs, and titted downwards.

This particular hyperbolic gem has been doing the rounds on Tumblr for a while. It resurfaced in April 2018, in response to a viral Twitter challenge posed by the US podcaster Whitney Reynolds: women, describe yourself the way a male writer would.

The dare hit a sweet spot. Many could summon up passages from books containing terrible, sexualised descriptions of women. Some of us recalled Haruki Murakami, whose every novel can be summarised as: ‘Protagonist is an ordinary man, except lots of really beautiful women want to sleep with him.’ Others remembered J M Coetzee, and his variations on the plot: ‘Tenured male professor in English literature sleeps with beautiful female undergraduate.’ It was a way for us to joke about the fact that so much great literature was written by men who could express perfectly detailed visual descriptions of the female body, and yet possessed such an impoverished understanding of the female mind.

This is why the philosophical project of trying to map the contours of other minds needs a reality check. If other humans are beyond our comprehension, what hope is there for understanding the experience of animals, artificial intelligence or aliens?

I am a literature scholar. Over thousands of years of literary history, authors have tried and failed to convey an understanding of Others (with a capital ‘O’). Writing fiction is an exercise that stretches an author’s imagination to its limits. And fiction shows us, again and again, that our capacity to imagine other minds is extremely limited.

It took feminism and postcolonialism to point out that writers were systematically misrepresenting characters who weren’t like them. Male authors, it seems, still struggle to present convincing female characters a lot of the time. The same problem surfaces again when writers try to introduce a figure with a different ethnicity to their own, and fail spectacularly.

I mean, ‘coffee-coloured skin’? Do I really need to find out how much milk you take in the morning to know the ethnicity you have in mind? Writers who keep banging on with food metaphors to describe darker pigmentation show that they don’t appreciate what it’s like to inhabit such skin, nor to have such metaphors applied to it.

Conversely, we recently learnt that some publishers rejected the Korean-American author Leonard Chang’s novel The Lockpicker (2017) – for failing to cater to white readers’ lack of understanding of Korean-Americans. Chang gave ‘none of the details that separate Koreans and Korean-Americans from the rest of us’, one publisher’s letter said. ‘For example, in the scene when she looks into the mirror, you don’t show how she sees her slanted eyes …’ Any failure to understand a nonwhite character, it seems, was the fault of the nonwhite author.

Fiction shows us that nonhuman minds are equally beyond our grasp. Science fiction provides a massive range of the most fanciful depictions of interstellar space travel and communication – but anthropomorphism is rife. Extraterrestrial intelligent life is imagined as Little Green Men (or Little Yellow or Red Men when the author wants to make a particularly crude point about 20th-century geopolitics). Thus alien minds have been subject to the same projections and assumptions that authors have applied to human characters, when they fundamentally differ from the authors themselves.

For instance, let’s look at a meeting of human minds and alien minds. The Chinese science fiction author Liu Cixin is best known for his trilogy starting with The Three-Body Problem (2008). It appeared in English in 2014 and, in that edition, each book has footnotes – because there are some concepts that are simply not translatable from Chinese into English, and English readers need these footnotes to understand what motivates the characters. But there are also aliens in this trilogy. From a different solar system. Yet their motivations don’t need footnoting in translation.

Splendid as the trilogy is, I find that very curious. There is a linguistic-cultural barrier that prevents an understanding of the novel itself, on this planet. Imagine how many footnotes we’d need to really grapple with the motivations of extraterrestrial minds.

Our imaginings of artificial intelligence are similarly dominated by anthropomorphic fantasies. The most common depiction of AI conflates it with robots. AIs are metal men. And it doesn’t matter whether the press is reporting on swarm robots invented in Bristol or a report produced by the House of Lords: the press shall plaster their coverage with Terminator imagery. Unless the men imagining these intelligent robots want to have sex with them, in which case they’re metal women with boobily breasting metal cleavage – a trend spanning the filmic arts from Fritz Lang’s Metropolis (1927) to the contemporary TV series Westworld (2016-). The way that we imagine nonhumans in fiction reflects how little we, as humans, really get each other.

All this supports the idea that embodiment is central to the way we understand one another. The ridiculous situations in which authors miss the mark stem from the difference between the author’s own body and that of the character. It’s hard to imagine what it’s like to be someone else if we can’t feel it. So, much as I enjoyed seeing a woman in high heels outrun a T-Rex in Jurassic World (2015), I knew that the person who came up with that scene clearly has no conception of what it’s like to inhabit a female body, be it human or Tyrannosaurus.

Because stories can teach compassion and empathy, some people argue that we should let AIs read fiction in order to help them understand humans. But I disagree with the idea that compassion and empathy are based on a deep insight into other minds. Sure, some fiction attempts to get us to understand one another. But we don’t need any more than a glimpse of what it’s like to be someone else in order to empathise with them – and, hopefully, to not want to kill and destroy them.

As the US philosopher Thomas Nagel claimed in 1974, a human can’t know what it is like to be a bat, because they are fundamentally alien creatures: their sensory apparatus and their movements are utterly different from ours. But we can imagine ‘segments’, as Nagel wrote. This means that, despite our lack of understanding of bat minds, we can find ways to keep a bat from harm, or even nurse and raise an orphaned baby bat, as cute videos on the internet will show you.

The problem is that sometimes we don’t realise this segment of just a glimpse of something bigger. We don’t realise until a woman, a person of colour, or a dinosaur finds a way to point out the limits of our imagination, and the limits of our understanding. As long as other human minds are beyond our understanding, nonhuman ones certainly are, too.Aeon counter – do not remove

Kanta Dihal is a postdoctoral research assistant and the research project coordinator of the Leverhulme Centre for the Future of Intelligence at the University of Cambridge.

This article was originally published at Aeon and has been republished under Creative Commons.

Neurocapitalism: Technological Mediation and Vanishing Lines

Open access book by Giorgio Griziotti is here. Technical book for you techies. The blurb:

“Technological change is ridden with conflicts, bifurcations and unexpected developments. Neurocapitalism takes us on an extraordinarily original journey through the effects that cutting-edge technology has on cultural, anthropological, socio-economic and political dynamics. Today, neurocapitalism shapes the technological production of the commons, transforming them into tools for commercialization, automatic control, and crisis management. But all is not lost: in highlighting the growing role of General Intellect’s autonomous and cooperative production through the development of the commons and alternative and antagonistic uses of new technologies, Giorgio Griziotti proposes new ideas for the organization of the multitudes of the new millennium.”

The Singularity is Near: When Humans Transcend Biology

Kurzweil builds and supports a persuasive vision of the emergence of a human-level engineered intelligence in the early-to-mid twenty-first century. In his own words,

With the reverse engineering of the human brain we will be able to apply the parallel, self-organizing, chaotic algorithms of  human intelligence to enormously powerful computational substrates. This intelligence will then be in a position to improve its own design, both hardware and software,  in a rapidly accelerating iterative process.

In Kurzweil's view, we must and will ensure we evade obsolescence by integrating emerging metabolic and cognitive technologies into our bodies and brains. Through self-augmentation with neurotechnological prostheses, the locus of human cognition and identity will gradually (but faster than we'll expect, due to exponential technological advancements) shift from the evolved substrate (the organic body) to the engineered substrate, ultimately freeing the human mind to develop along technology's exponential curve rather than evolution's much flatter trajectory.

The book is extensively noted and indexed, making the deep-diving reader's work a bit easier.

If you have read it, feel free to post your observations in the comments below. (We've had a problem with the comments section not appearing. It may require more troubleshooting.)

Algorithm brings whole-brain simulation within reach

An improvement to the Neural Simulation Tool (NEST) algorithm, the primary tool of the Human Brain Project, expanded the scope of brain neural data management (for simulations) from the current 1% of discrete neurons (about the number in the cerebellum) to 10%. The NEST algorithm can scale to store 100% of BCI-derived or simulated neural data within near-term reach as supercomputing capacity increases. The algorithm achieves its massive efficiency boost by eliminating the need to explicitly store as much data about each neuron’s state.

Abstract of Extremely Scalable Spiking Neuronal Network Simulation Code: From Laptops to Exascale Computers

State-of-the-art software tools for neuronal network simulations scale to the largest computing systems available today and enable investigations of large-scale networks of up to 10 % of the human cortex at a resolution of individual neurons and synapses. Due to an upper limit on the number of incoming connections of a single neuron, network connectivity becomes extremely sparse at this scale. To manage computational costs, simulation software ultimately targeting the brain scale needs to fully exploit this sparsity. Here we present a two-tier connection infrastructure and a framework for directed communication among compute nodes accounting for the sparsity of brain-scale networks. We demonstrate the feasibility of this approach by implementing the technology in the NEST simulation code and we investigate its performance in different scaling scenarios of typical network simulations. Our results show that the new data structures and communication scheme prepare the simulation kernel for post-petascale high-performance computing facilities without sacrificing performance in smaller systems.

Source: http://www.kurzweilai.net/new-algorithm-will-allow-for-simulating-neural-connections-of-entire-brain-on-future-exascale-supercomputers

Next discussion meeting Apr 2: Brain-Computer Interface, now and future

During our next discussion meeting, we’ll explore the status, future potential, and human implications of neuroprostheses–particularly brain-computer interfaces. If you are local to Albuquerque, check our Meetup announcement to join or RSVP. The announcement text follows.

Focal questions

What are neuroprostheses? How are they used now and what may the future hold for technology-enhanced sensation, motor control, communications, cognition, and other human processes?

Resources (please review before the meeting)

Primary resources
• New Brain-Computer Interface Technology (video, 18 m)
https://www.youtube.com/watch?v=CgFzmE2fGXA
• Imagining the Future: The Transformation of Humanity (video, 19 m)
https://www.youtube.com/watch?v=7XrbzlR9QmI
• The Berlin Brain-Computer Interface: Progress Beyond Communication and Control (research article, access with a free Frontiers account)
https://www.frontiersin.org/articles/10.3389/fnins.2016.00530/full
• The Elephant in the Mirror: Bridging the Brain’s Explanatory Gap of Consciousness (research article)
https://www.frontiersin.org/articles/10.3389/fnsys.2016.00108/full

Other resources (recommend your own in the comments!)

• DARPA implant (planned) with up to 1 million neural connections (short article)
https://www.darpa.mil/news-events/2015-01-19

Extra Challenge: As you review the resources, think of possible implications from the perspectives of the other topics we’ve recently discussed:
• the dilemma of so much of human opinion and action deriving from non-conscious sources
• questions surrounding what it means to ‘be human’ and what values we place on our notions of humanness (e.g., individuality and social participation, privacy, ‘self-determination’ (or the illusion thereof), organic versus technologically enhanced cognition, etc.)