Category Archives: neuroplasticity

Future discussion topic recommendations

Several of us met on Labor Day with the goal of identifying topics for at least five future monthly meetings. (Thanks, Dave N, for hosting!) Being the overachievers we are, we pushed beyond the goal. Following are the resulting topics, which will each have its own article on this site where we can begin organizing references for the discussion:

  • sex-related influences on emotional memory
    • gross and subtle brain differences (e.g., “walls of the third ventricle – sexual nuclei”)
    • “Are there gender-based brain differences that influence differences in perceptions and experience?”
    • epigenetic factors (may need an overview of epigenetics)
  • embodied cognition
    • computational grounded cognition (possibly the overview and lead-in topic)
    • neuro-reductionist theory vs. enacted theory of mind
    • “Could embodied cognition influence brain differences?” (Whoever suggested this, please clarify.)
  • brain-gut connection (relates to embodied cognition, but can stand on its own as a topic)
  • behavioral priming (one or multiple discussions)
  • neuroscience of empathy – effects on the brain, including on neuroplasticity
  • comparative effects of various meditative practices on the brain
  • comparative effects of various psychedelics on the brain
  • effects of childhood poverty on the brain

If I missed anything, please edit the list (I used HTML in the ‘Text’ view to get sub-bullets). If you’re worried about the formatting, you can email your edits to cogniphile@albuquirky.net and Mark will post your changes.

Embodied consciousness and the Flow Genome Project

In line with our July joint meeting with the NM Tech Council, I’m reading a fascinating book (Stealing Fire) on the variety of ways humans can experience states of flow (optimal states of consciousness and performance). The authors, Steven Kotler and Jamie Wheal, explain the significance of flow and introduce their Flow Dojo concept in the videos linked below. Applying methods for achieving flow is often categorized in the consciousness hacking movement, also called brain hacking.

What is Flow (6+ minutes)

The Flow Dojo (4+ minutes)

All Flow Genome Project videos

Long (1 hour) interview by Jason Silva follows:

Mass and activity of brain structures correlate with political perspectives

Brain imaging research indicates some aspects of individual political orientation correlate significantly with the mass and activity of particular brain structures including the right amygdala and the insula. This correlation may derive in part from genetics, but is also influenced by environment and behavior.

“there’s a critical nuance here. Schreiber thinks the current research suggests not only that having a particular brain influences your political views, but also that having a particular political view influences and changes your brain. The causal arrow seems likely to run in both directions—which would make sense in light of what we know about the plasticity of the brain. Simply by living our lives, we change our brains. Our political affiliations, and the lifestyles that go along with them, probably condition many such changes.”

Thanks to member, Edward, for recommending this article: http://www.motherjones.com/politics/2013/02/brain-difference-democrats-republicans 

In a similar vein, Bob Altemeyer conducted and reported on some seminal social science research and theory on political dispositions. See http://home.cc.umanitoba.ca/~altemey/. Note the free book link on the left.

 

Neuroplasticity at the neuron and synapse level – Neurons sort into functional networks

“Until recently, scientists had thought that most synapses of a similar type and in a similar location in the brain behaved in a similar fashion with respect to how experience induces plasticity,” Friedlander said. “In our work, however, we found dramatic differences in the plasticity response, even between neighboring synapses in response to identical activity experiences.”

“Individual neurons whose synapses are most likely to strengthen in response to a certain experience are more likely to connect to certain partner neurons, while those whose synapses weaken in response to a similar experience are more likely to connect to other partner neurons,” Friedlander said. “The neurons whose synapses do not change at all in response to that same experience are more likely to connect to yet other partner neurons, forming a more stable but non-plastic network.”

Read more at: https://medicalxpress.com/news/2016-02-scientists-brain-plasticity-assorted-functional.html#jCp