Category Archives: embodied cognition

Liology: Towards an integration of science and meaning

In this 20-minute video Jeremy Lent gives a brief introduction into his system of liology, his response to substance dualism. Conventional science maintains this dualism, so it is up to the ecological science of dynamical systems theory to correct it. He finds a precursor of systems science in Chinese Neo-Confucianism, which seems a bit of romantic retro-fitting to me, given their own environmental degradation which he minimalizes in his book The Patterning Instinct. That aside, he’s right about the emerging paradigm of systems science as a necessary metaphoric shift if we are to have any chance of curtailing climate change and implementing a sustainable and humane future.

Check out Ed Berge’s blog

We’ve come to appreciate Ed Berge’s thoughtful posts on consciousness, metaphorical thinking, etc. Check out his fun, informative blog, Proactive Progressive Propagation. (Where I work, that would definitely become ‘P3.’)

The real problem of consciousness

See this article. A few excerpts:

“A new picture is taking shape in which conscious experience is seen as deeply grounded in how brains and bodies work together to maintain physiological integrity – to stay alive.”

“The brain is locked inside a bony skull. All it receives are ambiguous and noisy sensory signals that are only indirectly related to objects in the world. Perception must therefore be a process of inference, in which indeterminate sensory signals are combined with prior expectations or ‘beliefs’ about the way the world is, to form the brain’s optimal hypotheses of the causes of these sensory signals.”

“A number of experiments are now indicating that consciousness depends more on perceptual predictions, than on prediction errors. […] We’ve found that people consciously see what they expect, rather than what violates their expectations.”

Wild systems theory (WST) – context and relationships make reality meaningful

Edward has posted some great thoughts and resources on embodied cognition (EC). I stumbled on some interesting information on a line of thinking within the EC literature. I find contextualist, connectivist approaches compelling in their ability to address complex-systems such as life and (possibly) consciousness. Wild systems theory (WST) “conceptualizes organisms as multi-scale self-sustaining embodiments of the phylogenetic, cultural, social, and developmental contexts in which they emerged and in which they sustain themselves. Such self-sustaining embodiments of context are naturally and necessarily about the multi-scale contexts they embody. As a result, meaning (i.e., content) is constitutive of what they are. This approach to content overcomes the computationalist need for representation while simultaneously satisfying the ecological penchant for multi-scale contingent interactions.”While I find WST fascinating, I’m unclear on whether it has been or can be assessed empirically. What do you think? Is WST shackled to philosophy?

Can one person know another’s mental state? Physicalists focus on how each of us develops a theory of mind (TOM) about each of the other people we observe. TOM is a theory because it is based on assumptions we make about others’ mental states by observing their behaviors. It is not based on any direct reading or measurement of internal processes. In its extreme, the physicalist view asserts that subjective experience and consciousness itself are merely emergent epiphenomena and not fundamentally real.

EC theorists often describe emergent or epiphenomenal subjective properties such as emotions and conscious experiences as “in terms of complex, multi-scale, causal dynamics among objective phenomena such as neurons, brains, bodies, and worlds.” Emotions, experiences, and meanings are seen to emerge from, be caused by or identical with, or be informational aspects of objective phenomena. Further, many EC proponents regards subjective properties as “logically unnecessary to the scientific description.” Some EC theorists conceive of the non-epiphenomenal reality of experience in a complex systems framework and define experience in terms of relational properties. In Gibson’s (1966) concept of affordances, organisms perceive behavioral possibilities in other organisms and in their environment. An affordance is a perceived relationship (often in terms of utility), such a how an organism might use something–say a potential mate, prey/food, or a tool. Meaning arises from “bi-directional aboutness” between an organism and what it perceives or interacts with. Meaning is about relationship.

(A very good, easy read on meaning arising from relationships is the book Learning How to Learn, by Novak and Gowin. In short, it’s the connecting/relating words such as is, contains, produces, consumes, etc., that enable meaningful concepts to be created in minds via language that clarifies context.)

Affordances and relationality at one level of organization and analysis carve out a non-epiphenomenal beachhead but do not banish epiphenomena from that or other levels. There’s a consideration of intrinsic, non-relational properties (perhaps mass) versus relational properties (such as weight). But again, level/scale of analysis matters (“mass emerges from a particle’s interaction with the Higgs field” and is thus relational after all) and some take this line of thinking to a logical end where there is no fundamental reality.

In WST, “all properties are constituted of and by their relations with context. As a result, all properties are inherently meaningful because they are naturally and necessarily about the contexts within which they persist. From this perspective, meaning is ubiquitous. In short, reality is inherently meaningful.”

2. Jordan, J. S., Cialdella, V. T., Dayer, A., Langley, M. D., & Stillman, Z. (2017). Wild Bodies Don’t Need to Perceive, Detect, Capture, or Create Meaning: They ARE Meaning. Frontiers in psychology8, 1149. Available from: [accessed Nov 09 2017]

BMAI members repository copy (PDF):

Real and false reason

Some liberals (and scientists) still think that reason is somehow above and beyond emotion. When I suggest framing in emotional terms they say sure, but that works only for emotional issues as if reason is something beyond emotion. So here’s a reminder from  this Lakoff classic:

“It is a basic principle of false reason that every human being has the same reason governed by logic — and that if you just tell people the truth, they will reason to the right conclusion. […] But many liberals, assuming a false view of reason, think that such a [moral, emotional] messaging system for ideas they believe in would be illegitimate — doing the things that the conservatives do that they consider underhanded. Appealing honestly to the way people really think is seen as emotional and hence irrational and immoral. Liberals, clinging to false reason, simply resist paying attention to real reason.”

“Real reason is embodied in two ways. It is physical, in our brain circuitry. And it is based on our bodies as the function in the everyday world, using thought that arises from embodied metaphors. And it is mostly unconscious.  False reason sees reason as fully conscious, as literal, disembodied, yet somehow fitting the world directly, and working not via frame-based, metaphorical, narrative and emotional logic, but via the logic of logicians alone.”

“Real reason is inexplicably tied up with emotion; you cannot be rational without being emotional. False reason thinks that emotion is the enemy of reason,  that it is unscrupulous to call on emotion. Yet people with brain damage who cannot feel emotion cannot make rational decisions because they do not know what to want, since like and not like mean nothing. ‘Rational’ decisions are based on a long history of emotional responses by oneself and others. Real reason requires emotion.”

The Metaphorical Brain

Lakoff’s last article was published in this open access Ebook edited by Seana Coulson and Vicky T. Lai, published by Frontiers Media SA in Frontiers in Human Neuroscience (March, 2016). The blurb:

Metaphor has been an issue of intense research and debate for decades (see, for example [1]). Researchers in various disciplines, including linguistics, psychology, computer science, education, and philosophy have developed a variety of theories, and much progress has been made [2]. For one, metaphor is no longer considered a rhetorical flourish that is found mainly in literary texts. Rather, linguists have shown that metaphor is a pervasive phenomenon in everyday language, a major force in the development of new word meanings, and the source of at least some grammatical function words [3]. Indeed, one of the most influential theories of metaphor involves the suggestion that the frequency of metaphoric language results because cross-domain mappings are a major determinant in the organization of semantic memory, as cognitive and neural resources for dealing with concrete domains are recruited for the conceptualization of more abstract ones [4]. Researchers in cognitive neuroscience have explored whether particular kinds of brain damage are associated with metaphor production and comprehension deficits, and whether similar brain regions are recruited when healthy adults understand the literal and metaphorical meanings of the same words (see [5] for a review). Whereas early research on this topic focused on the issue of the role of hemispheric asymmetry in the comprehension and production of metaphors [6], in recent years cognitive neuroscientists have argued that metaphor is not a monolithic category, and that metaphor processing varies as a function of numerous factors, including the novelty or conventionality of a particular metaphoric expression, its part of speech, and the extent of contextual support for the metaphoric meaning (see, e.g., [7], [8], [9]). Moreover, recent developments in cognitive neuroscience point to a sensorimotor basis for many concrete concepts, and raise the issue of whether these mechanisms are ever recruited to process more abstract concepts [10]. This Frontiers Research Topic brings together contributions from researchers in cognitive neuroscience whose work involves the study of metaphor in language and thought in order to promote the development of the neuroscientific investigation of metaphor. Adopting an interdisciplinary perspective, it synthesizes current findings on the cognitive neuroscience of metaphor, provides a forum for voicing novel perspectives, and promotes avenues for new research on the metaphorical brain.

[1] Arbib, M. A. (1989). The metaphorical brain 2: Neural networks and beyond. John Wiley & Sons, Inc.
[2] Gibbs Jr, R. W. (Ed.). (2008). The Cambridge handbook of metaphor and thought. Cambridge University Press.
[3] Sweetser, Eve E. “Grammaticalization and semantic bleaching.” Annual Meeting of the Berkeley Linguistics Society. Vol. 14. 2011.
[4] Lakoff, G., & Johnson, M. (1999). Philosophy in the flesh: The embodied mind and its challenge to western thought.
[5] Coulson, S. (2008). Metaphor comprehension and the brain. The Cambridge handbook of metaphor and thought, 177-194.
[6] Winner, E., & Gardner, H. (1977). The comprehension of metaphor in brain-damaged patients. Brain, 100(4), 717-729.
[7] Coulson, S., & Van Petten, C. (2007). A special role for the right hemisphere in metaphor comprehension?: ERP evidence from hemifield presentation. Brain Research, 1146, 128-145.
[8] Lai, V. T., Curran, T., & Menn, L. (2009). Comprehending conventional and novel metaphors: An ERP study. Brain Research, 1284, 145-155.
[9] Schmidt, G. L., Kranjec, A., Cardillo, E. R., & Chatterjee, A. (2010). Beyond laterality: a critical assessment of research on the neural basis of metaphor. Journal of the International Neuropsychological Society, 16(01), 1-5.
[10] Desai, R. H., Binder, J. R., Conant, L. L., Mano, Q. R., & Seidenberg, M. S. (2011). The neural career of sensory-motor metaphors. Journal of Cognitive Neurosc., 23(9), 2376

Mapping the brain’s metaphor circuitry

By George Lakoff, Frontiers in Human Neureoscience, Hypothesis and Theory Article (link), 2014. Introduction: “An overview of the basics of metaphorical thought and language from the perspective of Neurocognition, the integrated interdisciplinary study of how conceptual thought and language work in the brain. The paper outlines a theory of metaphor circuitry and discusses how everyday reason makes use of embodied metaphor circuitry.” Also see the section on experimental results for the studies.

Embodied philosophy in a nutshell

In this 4-minute clip Lakoff summarizes how philosophy is changed by cognitive science. Particular philosophies get attached to a root metaphor (or blend) that entails certain premises and conclude that it is reality in toto without going further to understand that other metaphors entail different premises with equally logical conclusions. The embodied thesis helps us understand how our body-minds work to correct many of philosophy’s metaphysical assumptions while providing a postmetaphysical frame for an empirical, embodied and multifarious philosophy.

Who am I: the conscious and unconscious self

Frontiers in Human Neuroscience, 2017; 11: 126. Some excerpts:

“In this article we suggest the idea that the processing of self-referential stimuli in cortical midline structures (CMS) may represent an important part of the conscious self, which may be supplemented by an unconscious part of the self that has been called an ’embodied mind’ (Varela et al., 1991), which relies on other brain structures.”

“When we describe the self as structure and organization we understand it as a system. But the concept of the embodied self states that the self or cognition is not an activity of the mind alone, but is distributed across the entire situation including mind, body, environment (e.g., Beer, 1995), thereby pointing to an embodied and situated self.”

“Furthermore, we argue that through embodiment the self is also embedded in the environment. This means that our self is not isolated but intrinsically social. […] Hence, the self should not be understood as an entity located somewhere in the brain, isolated from both the body and the environment. In contrast, the self can be seen as a brain-based neurosocial structure and organization, always linked to the environment (or the social sphere) via embodiment and embeddedness.”

Memes are like cognitive frames

It occurred to me that memes are a lot like frames as Lakoff describes them. Lakoff has done extensive cognitive scientific work on schemas, metaphors and frames. Check out this lengthy article in Frontiers in Human Neuroscience, 2014; 8: 958, “Mapping the brain’s metaphor circuitry.” Even though they don’t relate this to the concept of memes, there are some striking similarities. E.g.: 

“Reddy had found that the abstract concepts of communication and ideas are understood via a conceptual metaphor: Ideas Are Objects; Language Is a Container for Idea-Objects; Communication Is Sending Idea-Objects in Language-Containers.”