Tag Archives: machine learning

Deep clustering machine learning enables AI to distinguish individual voices in a crowd

AI system can isolate individuals’ voices from other environmental noise, including other voices. Such a system has many potential uses, both benign and nefarious. The ability is rapidly improving to untangle signals from noise and identify which signals are from which sources. The approach should be able to apply to other kinds of signals too, not only sounds.

https://www.newscientist.com/article/2151268-an-ai-has-learned-how-to-pick-a-single-voice-out-of-a-crowd/

State of AI progress

An MIT Technology Review article introduces the man responsible for the 30-year-old deep learning approach, explains what deep machine learning is, and questions whether deep learning may be the last significant innovation in the AI field. The article also touches on a potential way forward for developing AIs with qualities more analogous to the human brain’s functioning.

Gender role bias in AI algorithms

Should it surprise us that human biases find their way into human-designed AI algorithms trained using data sets of human artifacts?

Machine-learning software trained on the datasets didn’t just mirror those biases, it amplified them. If a photo set generally associated women with cooking, software trained by studying those photos and their labels created an even stronger association.

https://www.wired.com/story/machines-taught-by-photos-learn-a-sexist-view-of-women?mbid=nl_82117_p2&CNDID=24258719

Excellent article on the history and recent advances in AI

This NY Times article is worth your time, if you are interested in AI–especially if you are still under the impression AI has ossified or lost its way.

TED Talk and PJW Comment

TED talk of possible interest:

Comment I posted there:
Here is an interdisciplinary “moon-shot” suggestion that we should at least start talking about, now, before it is too late. Let’s massively collaborate to develop a very mission-specific AI system to help us figure out, using emerging genetic editing technologies (e.g., CRISPR, etc.), ideally how to tweak (most likely) species-typical genes currently constraining our capacities for prosociality, biophilia, and compassion, so that we can intentionally evolve into a sustainable species. This is something that natural selection, our past and current psycho-eugenicist, will never do (it cannot), and something that our current genetic endowment will never allow cultural processes / social engineering approaches to adequately transform us. Purposed-designed AI systems feeding off of growing databases of intra-genomic dynamics and gene-environment interactions could greatly speed our understanding of how to make these genetic adjustments to ourselves, the only hope for our survival, in a morally optimal (i.e., fewest mistakes due to unexpected gene-gene and gene-regulatory (exome) and epigenetic interactions; fewest onerous side-effects) as well as in a maximally effective and efficient way. Come together, teams of AI scientists and geneticists! We need to grab our collective pan-cultural intrapsychic fate away from the dark hands of natural selection, and AI can probably help. END