Tag Archives: brain mapping

Informative neuroscience presentations at NYU Center for Mind, Brain & Consciousness

The NYU Center for Mind, Brain & Consciousness hosts presentations, including topical debates among leading neuroscience researchers. Many of the sessions are recorded for later viewing. The upcoming debate among Joseph LeDoux (Center for Neural Science, NYU), Yaïr Pinto (Psychology, University of Amsterdam), and Elizabeth Schechter (Philosophy, Washington University in St. Louis), will tackle the question, “Do Split-brain patients have two minds?” Previous topics addressed animal consciousness, hierarchical predictive coding and perception, AI ‘machinery,’ AI ethics, unconscious perception, research replication issues, neuroscience and art, explanatory power of mirror neurons, child vs adult learning, and brain-mapping initiatives.

Fast mapping technique will revolutionize brain research

Tony Zador of Cold Spring Harbor Laboratory devised a new technique for mapping connections among neurons. It is much faster than other methods and at least as accurate as the most accurate competing methods, including fluorescence techniques. The technique, MAPseq, uses genetically modified viruses to insert unique RNA sequences (“bar codes”) into each neuron. Post-mortem DNA sequencing identifies connections among all neurons in the sample. The resulting model is structural, not functional. Derived models are not spatially accurate (i.e., not to scale and not physiographically representative). The models identify intraneural connections but not specific messaging among neurons. Zador is pursuing functional analysis by combining MAPseq with other techniques. MAPseq currently can map about 100,000 neurons per week. Increasing hardware and software efficiency and power will improve throughput dramatically over time.

This is the most startling brain research development Mark has come across recently. The implications are tantalizing. Start with embedding unique codes (think of inventory numbers) in each neuron. Presumably using a virus to add a consistent unique identifier to every cell in an organism could result in a unique  “bar code” for every human and every other organism. We already have such a code in our genome, but this method could create a simpler code that would be easily readable by miniature, portable DNA sequencers. It could be a shorthand code linked to a person’s full genome record. 

Back to brain research, once Zador and others find ways to combine real-time functional mapping and non-destructive ‘reading’ of the cellular IDs, increasingly faster computing and smarter (AI-enabled) software may make it possible to map not only a person’s neural connectome, but the functional dynamics playing out in the brain from moment to moment. That, in turn, could make it possible to create a high-fidelity, functional copy of a human mind (aka, a ‘mindclone’). It would probably not be necessary to explicitly model every neuron, synapse, and intraneural communication, but that may one day be possible. 

Source: https://www.quantamagazine.org/new-brain-maps-with-unmatched-detail-may-change-neuroscience-20180404/ 

Prosthetic memory system successful in humans

“This is the first time scientists have been able to identify a patient’s own brain cell code or pattern for memory and, in essence, ‘write in’ that code to make existing memory work better, an important first step in potentially restoring memory loss”

We showed that we could tap into a patient’s own memory content, reinforce it and feed it back to the patient,” Hampson said. “Even when a person’s memory is impaired, it is possible to identify the neural firing patterns that indicate correct memory formation and separate them from the patterns that are incorrect. We can then feed in the correct patterns to assist the patient’s brain in accurately forming new memories, not as a replacement for innate memory function, but as a boost to it.”

Source: http://www.wakehealth.edu/News-Releases/2018/Prosthetic_Memory_System_Successful_in_Humans_Study_Finds.htm