Category Archives: complexity

Mathematical field of topology reveals importance of ‘holes in brain’

New Scientist article: Applying the mathematical field of topology to brain science suggests gaps in densely connected brain regions serve essential cognitive functions. Newly discovered densely connected neural groups are characterized by a gap in the center, with one edge of the ring (cycle) being very thin. It’s speculated that this architecture evolved to enable the brain to better time and sequence the integration of information from different functional areas into a coherent pattern.

Aspects of the findings appear to support Edelman’s and Tononi’s (2000, p. 83) theory of neuronal group selection (TNGS, aka neural Darwinism).


Edelman, G.M. and Tononi, G. (2000). A Universe of Consciousness: How Matter Becomes Imagination. Basic Books.

AI Creativity

Google and others are developing neural networks that learn to recognize and imitate patterns present in works of art, including music. The path to autonomous creativity is unclear. Current systems can imitate existing artworks, but cannot generate truly original works. Human prompting and configuration are required.

Google’s Magenta project’s neural network learned from 4,500 pieces of music before creating the following simple tune (drum track overlaid by a human):

Click Play button to listen->

Is it conceivable that AI may one day be able to synthesize new made-to-order creations by blending features from a catalog of existing works and styles? Imagine being able to specify, “Write me a new musical composition reminiscent of Rhapsody in Blue, but in the style of Lynyrd Skynyrd.

There is already at least one human who could instantly play Rhapsody in Blue in Skynyrd style, but even he does not (to my knowledge) create entirely original pieces.

Original article: https://www.technologyreview.com/s/601642/ok-computer-write-me-a-song/

See also: https://www.technologyreview.com/s/600762/robot-art-raises-questions-about-human-creativity/

TED Talk and PJW Comment

TED talk of possible interest:

Comment I posted there:
Here is an interdisciplinary “moon-shot” suggestion that we should at least start talking about, now, before it is too late. Let’s massively collaborate to develop a very mission-specific AI system to help us figure out, using emerging genetic editing technologies (e.g., CRISPR, etc.), ideally how to tweak (most likely) species-typical genes currently constraining our capacities for prosociality, biophilia, and compassion, so that we can intentionally evolve into a sustainable species. This is something that natural selection, our past and current psycho-eugenicist, will never do (it cannot), and something that our current genetic endowment will never allow cultural processes / social engineering approaches to adequately transform us. Purposed-designed AI systems feeding off of growing databases of intra-genomic dynamics and gene-environment interactions could greatly speed our understanding of how to make these genetic adjustments to ourselves, the only hope for our survival, in a morally optimal (i.e., fewest mistakes due to unexpected gene-gene and gene-regulatory (exome) and epigenetic interactions; fewest onerous side-effects) as well as in a maximally effective and efficient way. Come together, teams of AI scientists and geneticists! We need to grab our collective pan-cultural intrapsychic fate away from the dark hands of natural selection, and AI can probably help. END