Category Archives: brain functioning

The neuroscience of creativity

Since this came up in our book discussion or Range yesterday,  something relevant from this article. It’s interesting how the salience network mediates between and integrates two normally one on, one off networks.  And how it is the connections between networks that seems to do the trick akin to the book’s description of how those with range make analogous connections between ideas and domains.

“Three of these distinct brain networks — the default mode, the executive control network and the salience network — have been identified by Dr Beaty and colleagues as being associated with creativity.

“The default mode network is activated when people are relaxed and their mind is wandering to different topics or experiences, associated with remembering past experiences, thinking about possible future experience and daydreaming.

“The executive control network comes into play when you need to pay close attention and focus on something in the environment. It comes online when we have to focus our attention and cognitive resources on more demanding tasks that require us to hone our attention and manage multiple things in our mind at one time, directing the content of our thoughts.

“The salience network plays a significant role in detecting and filtering important — or salient — information. It’s called salience because it helps us to pick up on salient information in the environment or internally. Interestingly, the default mode and the executive control networks don’t typically work together — when one network is activated, the other tends to be deactivated. One thing that we think the salience network might be doing is switching between an idea-generation mode, which is more of a default process, and the idea-evaluation mode, which is more of a control way of thinking. […] More creative people tended to have more network connections.”

Book: Range: Why Generalists Triumph in a Specialized World

In his new book, Range: Why Generalists Triumph in a Specialized World, David J. Epstein investigates the significant advantages of generalized cognitive skills for success in a complex world. We’ve heard and read many praises for narrow expertise in both humans and AIs (Watson, Alpha Go, etc.). In both humans and AIs, however, narrow+deep expertise does not translate to adaptiveness when reality presents novel challenges, as it does constantly. 

As you ingest this highly readable, non-technical book, please add your observations to the comments below. 

how does music affect the brain?

The blurb:

“In this episode of Tech Effects, we explore the impact of music on the brain and body. From listening to music to performing it, WIRED’s Peter Rubin looks at how music can change our moods, why we get the chills, and how it can actually change pathways in our brains.”

For me the most interesting part was later in the video (10:20), how when we improvise we shut down the pre-frontal planning part of the brain and ‘just go with the flow,’ which is our most creative and innovation moments. This though does depend on having used the pre-frontal cortex in learning the techniques of music to get them so ingrained in memory that we are then free to play with what we’ve programmed.

Neuroscience: Deep breathing changes your brain

Humans have some intentional control over our brains (and minds and bodies) and focused breathing is one of those control mechanisms.

“This recent study finally answers these questions by showing that volitionally controlling our respirational, even merely focusing on one’s breathing, yield additional access and synchrony between brain areas. This understanding may lead to greater control, focus, calmness, and emotional control.”

Ultrasound stimulation to improve brain function

Earlier this year I attended a presentation by Dr. Jay Sanguinetti, UNM, on using ultrasound stimulation of the brain to improve factors related to attention and clear thinking. His team published an article recently in Frontiers in Neurology describing their research.

New free e-books from Frontiers in Science

See the selection here. Frontiers is a pioneer in open access science publishing. Of possible interest to this forum:

What Is the Role for Effective Pedagogy In Contemporary Higher Education?

Reaching to Grasp Cognition: Analyzing Motor Behavior to Investigate Social Interactions

Neural Computation in Embodied Closed-Loop Systems for the Generation of Complex Behavior: From Biology to Technology

Cellular Therapies: Past, Present and Future

Software Architectures for Humanoid Robotics

Informative neuroscience presentations at NYU Center for Mind, Brain & Consciousness

The NYU Center for Mind, Brain & Consciousness hosts presentations, including topical debates among leading neuroscience researchers. Many of the sessions are recorded for later viewing. The upcoming debate among Joseph LeDoux (Center for Neural Science, NYU), Yaïr Pinto (Psychology, University of Amsterdam), and Elizabeth Schechter (Philosophy, Washington University in St. Louis), will tackle the question, “Do Split-brain patients have two minds?” Previous topics addressed animal consciousness, hierarchical predictive coding and perception, AI ‘machinery,’ AI ethics, unconscious perception, research replication issues, neuroscience and art, explanatory power of mirror neurons, child vs adult learning, and brain-mapping initiatives.

Neurofeedback as a tool to modulate cognition and behavior

Article here from Frontiers in Human Neuroscience, 2017, 11:51.  The abstract (note my italicized highlighting):

“Neurofeedback is attracting renewed interest as a method to self-regulate one’s own brain activity to directly alter the underlying neural mechanisms of cognition and behavior. It not only promises new avenues as a method for cognitive enhancement in healthy subjects, but also as a therapeutic tool. In the current article, we present a review tutorial discussing key aspects relevant to the development of electroencephalography (EEG) neurofeedback studies. In addition, the putative mechanisms underlying neurofeedback learning are considered. We highlight both aspects relevant for the practical application of neurofeedback as well as rather theoretical considerations related to the development of new generation protocols. Important characteristics regarding the set-up of a neurofeedback protocol are outlined in a step-by-step way. All these practical and theoretical considerations are illustrated based on a protocol and results of a frontal-midline theta up-regulation training for the improvement of executive functions. Not least, assessment criteria for the validation of neurofeedback studies as well as general guidelines for the evaluation of training efficacy are discussed.”

Free Frontier e-books July 2018

Here‘s the link to their lineup of new free e-books. Maybe we could even use one of them for a book discussion? I’m inclined toward the one titled Insight and Intuition: Two Sides of the Same Coin? Their blurb for the latter:


In the field of intuition it is widely accepted that problem solving proceeds in a more or less graded fashion from problem formulation to problem solution as previously encoded information is activated by clues to coherence. The resulting pattern of activation differentially sensitizes a person to new information that is pertinent for the solution. Eventually, the continuous (and rapid) build-up of coherent information is sufficient to cross a threshold of awareness or noticing. Accordingly, implicitly acquired knowledge and experience play an important role because their content is assumed to be non-consciously and gradually activated in memory from clues in the environment that initiate an automatic spreading of activation. These assumptions are summarized in what has been known as the continuity model of intuition.

On the contrary, the current literature on insight problem solving favors a discontinuity model. Particularly, insight is linked to processes that restructure the mental representation of a problem. It is assumed that prior knowledge and inappropriate assumptions result in self-imposed constraints that establish a biased representation of the problem and thus prevent a solution. Consequently, a discontinuity model suggests the first intuitive apprehension of the problem to lead to an impasse and has to be overcome by relaxing these constraints to find a solution.

Until now, there has neither been theoretical discussion nor empirical investigation on the continuity/discontinuity distinction. Our open research questions include the following:

1. Are continuity/discontinuity different sides of the same coin distinguishing different stages within a continuous solution process, or do they stand for mutual exclusive processes?
2. If intuition is seen as “coherence building mechanism”, is it conceivable to describe the different stages within insight problem solving as coherence changing processes?
3. What are the underlying neuro-cognitive mechanisms that allow the search for coherence, respectively the change of coherence (representational change)? Both processes might go beyond a simple spreading activation account.
4. How does re-combination and the generation of new and novel solutions fit into the intuitive framework?
5. Could the application of Darwinian principles help to inform us about the underlying principles of both?