Tag Archives: metabolism

We have the wrong paradigm for the complex adaptive system we are part of

This very rich, conversational thought piece asks if we, as participant designers within a complex adaptive ecology, can envision and act on a better paradigm than the ones that propel us toward mono-currency and monoculture.

We should learn from our history of applying over-reductionist science to society and try to, as Wiener says, “cease to kiss the whip that lashes us.” While it is one of the key drivers of science—to elegantly explain the complex and reduce confusion to understanding—we must also remember what Albert Einstein said, “Everything should be made as simple as possible, but no simpler.” We need to embrace the unknowability—the irreducibility—of the real world that artists, biologists and those who work in the messy world of liberal arts and humanities are familiar with.

In order to effectively respond to the significant scientific challenges of our times, I believe we must view the world as many interconnected, complex, self-adaptive systems across scales and dimensions that are unknowable and largely inseparable from the observer and the designer. In other words, we are participants in multiple evolutionary systems with different fitness landscapes at different scales, from our microbes to our individual identities to society and our species. Individuals themselves are systems composed of systems of systems, such as the cells in our bodies that behave more like system-level designers than we do.

Joichi Ito

Sex differences in the gut-microbiome-brain axis


In recent years, the bidirectional communication between the gut microbiome and the brain has emerged as a factor that influences immunity, metabolism, neurodevelopment and behaviour. Cross-talk between the gut and brain begins early in life immediately following the transition from a sterile in utero environment to one that is exposed to a changing and complex microbial milieu over a lifetime. Once established, communication between the gut and brain integrates information from the autonomic and enteric nervous systems, neuroendocrine and neuroimmune signals, and peripheral immune and metabolic signals. Importantly, the composition and functional potential of the gut microbiome undergoes many transitions that parallel dynamic periods of brain development and maturation for which distinct sex differences have been identified. Here, we discuss the sexually dimorphic development, maturation and maintenance of the gut microbiome–brain axis, and the sex differences therein important in disease risk and resilience throughout the lifespan.