Tag Archives: brain imaging

Fast mapping technique will revolutionize brain research

Tony Zador of Cold Spring Harbor Laboratory devised a new technique for mapping connections among neurons. It is much faster than other methods and at least as accurate as the most accurate competing methods, including fluorescence techniques. The technique, MAPseq, uses genetically modified viruses to insert unique RNA sequences (“bar codes”) into each neuron. Post-mortem DNA sequencing identifies connections among all neurons in the sample. The resulting model is structural, not functional. Derived models are not spatially accurate (i.e., not to scale and not physiographically representative). The models identify intraneural connections but not specific messaging among neurons. Zador is pursuing functional analysis by combining MAPseq with other techniques. MAPseq currently can map about 100,000 neurons per week. Increasing hardware and software efficiency and power will improve throughput dramatically over time.

This is the most startling brain research development Mark has come across recently. The implications are tantalizing. Start with embedding unique codes (think of inventory numbers) in each neuron. Presumably using a virus to add a consistent unique identifier to every cell in an organism could result in a unique  “bar code” for every human and every other organism. We already have such a code in our genome, but this method could create a simpler code that would be easily readable by miniature, portable DNA sequencers. It could be a shorthand code linked to a person’s full genome record. 

Back to brain research, once Zador and others find ways to combine real-time functional mapping and non-destructive ‘reading’ of the cellular IDs, increasingly faster computing and smarter (AI-enabled) software may make it possible to map not only a person’s neural connectome, but the functional dynamics playing out in the brain from moment to moment. That, in turn, could make it possible to create a high-fidelity, functional copy of a human mind (aka, a ‘mindclone’). It would probably not be necessary to explicitly model every neuron, synapse, and intraneural communication, but that may one day be possible. 

Source: https://www.quantamagazine.org/new-brain-maps-with-unmatched-detail-may-change-neuroscience-20180404/ 

Neural responses to media a strong predictor of friendship

“The findings revealed that  similarity was strongest among friends, and this pattern appeared to manifest across brain regions involved in emotional responding, directing one’s attention and high-level reasoning. Even when the researchers controlled for variables, including left-handed- or right-handedness, age, gender, ethnicity, and nationality, the similarity in neural activity among friends was still evident. The team also found that fMRI response similarities could be used to predict not only if a pair were friends but also the social distance between the two.”

https://medicalxpress.com/news/2018-01-brain-reveals-friends-similar-neural.html

Neuroscience of Empathy

(This is copied from the Meetup site. Thanks again to Brent for hosting.)

Details

Empathy is the ability to put yourself in another person’s shoes and understand how they feel- to be them, even for a second. It’s the link between self and others: how we connect, heal, and relate. Considering its importance in every aspect of our lives, we are taking a deeper look at the neuroscience behind empathy.

Recommended Preparation Info.

The Neuroscience of Empathy | Article | 5 minutes (https://www.psychologytoday.com/blog/the-athletes-way/201310/the-neuroscience-empathy)

The Neuroscience of Compassion | Video | 20 min (https://youtu.be/n-hKS4rucTY)

Jeremy Rifkin: The empathic civilization | Video | 10 min (https://www.ted.com/talks/jeremy_rifkin_on_the_empathic_civilization)

A CALM LOOK AT THE MOST HYPED CONCEPT IN NEUROSCIENCE – MIRROR NEURONS | Article | 5 min (https://www.wired.com/2013/12/a-calm-look-at-the-most-hyped-concept-in-neuroscience-mirror-neurons/)

Empathy for others’ pain rooted in cognition rather than sensation | Article | 5 min (https://www.sciencedaily.com/releases/2016/06/160614100237.htm)

Thomas Lewis: “The Neuroscience of Empathy” | Video | 60 min (https://youtu.be/1-T2GsG0l1E)

Suggested Additional Info.

Feeling Others’ Pain: Transforming Empathy into Compassion | Article | 5 min (https://www.cogneurosociety.org/empathy_pain/)

Structural basis of empathy and the domain general region in the anterior insular cortex | Study | 20 min (http://journal.frontiersin.org/article/10.3389/fnhum.2013.00177/full)

Neurobiology of Empathy and Callousness: Implications for the Development of Antisocial Behavior | Study | 20 min (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2729461/)

The Science Behind Empathy and Empaths | Article | 5 min (https://www.psychologytoday.com/blog/the-empaths-survival-guide/201703/the-science-behind-empathy-and-empaths)

Study challenges perception that empathy erodes during medical school | Article | 5 min (https://www.sciencedaily.com/releases/2017/09/170909194039.htm)

Comments

  • Mark Harris

    Rifkin’s book, The Empathic Civilization, is excellent.

    29 days ago
  • John

    Here is a link to an excellent article arguing against a myopic focus on empathy.
    http://bostonreview.net/forum/paul-bloom-against-empathy

    23 days ago
  • John

    Here is a link to a free ebook that is entitled Compassion: Bridging Science and Practice. The book is the culmination of research findings in social neuroscience studies conducted by Tania Singer and others. There are multiple formats for download.
    http://www.compassion-training.org/?page=download&lang=en

    23 days ago
  • John

    Here is a link to an article about Tania Singer’s research in Science Magazine.
    http://flourishfoundation.org/wp-content/uploads/2014/04/Compassioan-Science-2013.pdf

    23 days ago
  • Edward

    From the link: “Patterns associated with empathic care, for instance, overlapped with systems in the brain associated with value and reward, such as the ventromedial prefrontal cortex and the medial orbitofrontal cortex. In contrast, patterns of empathic distress overlapped with systems in the brain known for mirroring, such as the premotor cortex and the primary and secondary somatosensory cortices, which help an individual simulate or imagine what another person is feeling or thinking.”

    23 days ago
  • Edward

    Here’s another one I just read: “Brain imaging reveals neural roots of caring. http://neurosciencenews.com/caring-neural-roots-6870/

    23 days ago
  • Edward

    From the conclusion: “Shared representations of affective states are activated from the top down in more  cognitive forms of empathy, which recruit additional executive and visuospatial processes. However, the literature overestimates distinctions between emotional and cognitive empathy, following traditional practices to dichotomize in science and philosophy. Despite each
    having unique features, affective and cognitive empathy both require access to the shared representations of emotion that provide simulations with content and an
    embodied meaning.”

    23 days ago
  • Edward

    The entire article can be read here: https://sci-hub.cc/10.1038/nrn.2017.72

    23 days ago
  • Edward

    And this article. Abstract: “Recent research on empathy in humans and other mammals seeks to dissociate emotional and cognitive empathy. These forms, however, remain interconnected in evolution, across species and at the level of neural mechanisms. New data have facilitated the development of empathy models such as the perception–action model (PAM) and mirror-neuron theories. According to the PAM, the emotional states of others are understood through personal, embodied representations that allow empathy and accuracy to increase based on the observer’s past experiences. In this Review, we discuss the latest evidence from studies carried out across a wide range of species, including studies on yawn contagion, consolation, aid-giving and contagious physiological affect, and we summarize neuroscientific data on representations related to another’s state.” https://www.nature.com/nrn/journal/v18/n8/full/nrn.2017.72.html

    23 days ago
  • John

    Here is a link to an excellent video of 4 researchers giving talks at the Stanford CCARE conference. The video is 75 minutes.
    CCARE Science of Compassion 2014: Introduction to the Science of Empathy, Altruism, and Compassion
    https://youtu.be/YFDiQNwqbfw

    22 days ago
  • Edward

    Jimmy Kimmel in this video highlights a lot of what we talked about tonight. Yes, we need to feel empathy for those killed an injured in the Las Vegas shooting, but we also need to DO something about it. Meaning gun legislation. He highlights those in Congress who are making it easier instead of harder to obtain the kind of automatic weapons used in this mass murder. The reality is we must make such guns illegal, for it acts on our empathy and morality in a way that protects and serves us. https://www.youtube.com/watch?v=ruYeBXudsds

    21 days ago

Brain’s facial-recognition mechanism revealed

Caltech researchers have identified the brain mechanisms that enable primates to quickly identify specific faces. In a feat of efficiency, surprisingly few feature-recognition neurons are involved in a process that may be able to distinguish among billions of faces. Each neuron in the facial-recognition system specializes in noticing one feature, such as the width of the part in the observed person’s hair. If the person is bald or has no part, the part-width-recognizing neuron remains silent. A small number of such specialized-recognizer neurons feed their inputs to other layers (patches) that integrate a higher-level pattern (e.g., hair pattern), and these integrate at yet higher levels until there is a total face pattern. This process occurs nearly instantaneously and works regardless of the view angle (as long as some facial features are visible). Also, by cataloging which neurons perform which functions and then mapping these to a relatively small set of composite faces, researchers were able to tell which face a macaque (monkey) was looking at.

These findings seem to correlate closely with Ray Kurzweil’s (Google’s Chief Technology Officer) pattern-recognition theory of mind.

Scientific American article

BMCAI library file (site members only)